

TOPIC 1

Sets, Types of Sets, Disjoint Sets, Complementary Sets, Subsets, Power Set, Cardinal Number of Sets, Operations on Sets

Set A has *m* elements and set B has *n* elements. If the total number of subsets of A is 112 more than the total number of subsets of B, then the value of $m \cdot n$ is

[Sep. 06, 2020 (I)]

- 2. Let $S = \{1, 2, 3, ..., 100\}$. The number of non-empty subsets A of S such that the product of elements in A is even is: [Jan. 12, 2019 (I)]
 - (a) $2^{100} 1$
- (b) $2^{50} \left(2^{50} 1 \right)$
- (c) $2^{50} 1$
- (d) $2^{50} + 1$
- Let $S = \{x \in R : x \ge 0 \text{ and }$

$$2|\sqrt{x}-3|+\sqrt{x}(\sqrt{x}-6)+6=0$$
. Then S: [2018]

- (a) contains exactly one element.
 - (b) contains exactly two elements.
- (c) contains exactly four elements.
- (d) is an empty set.
- If $f(x) + 2f\left(\frac{1}{x}\right) = 3x$, $x \ne 0$ and

 $S = \{x \in R : f(x) = f(-x)\}; \text{ then } S:$

[2016]

- (a) contains exactly two elements.
- (b) contains more than two elements.
- (c) is an empty set.
- (d) contains exactly one element.
- Let $P = \{\theta : \sin\theta \cos\theta = \sqrt{2}\cos\theta\}$ and $Q = \{\theta : \sin\theta + (\cos\theta) = (\cos\theta)\}$ $\cos\theta = \sqrt{2} \sin\theta$ } be two sets. Then:

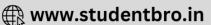
[Online April 10, 2016]

- (a) $P \subset Q$ and $Q P \neq \phi$
- (b) O ⊄ P
- (c) P = Q
- (d) $P \not\subset Q$

- A relation on the set $A = \{x : |x| < 3, x \in Z\},\$ where Z is the set of integers is defined by $R = \{(x, y) : y = |x|, x \neq -1\}$. Then the number of elements in the power set of R is: [Online April 12, 2014] (c) 8 (a) 32 (b) 16 (d) 64
- Let $X = \{1,2,3,4,5\}$. The number of different ordered pairs 7. (Y, Z) that can formed such that $Y \subseteq X$, $Z \subseteq X$ and $Y \cap Z$ is empty is:
 - (b) 3^5 (a) 5^2
- (c) 2^5
- If A, B and C are three sets such that $A \cap B = A \cap C$ and $A \cup B = A \cup C$, then [2009]
 - (a) A = C
- (b) B = C
- (c) $A \cap B = \phi$
- (d) A = B

TOPIC 2

Venn Diagrams, Algebraic Operations on Sets, De Morgan's Law, Number of Elements in **Different Sets**


- A survey shows that 73% of the persons working in an office like coffee, whereas 65% like tea. If x denotes the percentage of them, who like both coffee and tea, then x cannot be: [Sep. 05, 2020 (I)]
 - (a) 63
- (b) 36
- (c) 54
- A survey shows that 63% of the people in a city read newspaper A whereas 76% read newspaper B. If x% of the people read both the newspapers, then a possible value of x can be: [Sep. 04, 2020 (I)]
 - (a) 29
- (b) 37
- (c) 65
- (d) 55
- 11. Let $\bigcup_{i=1}^{30} X_i = \bigcup_{i=1}^{n} Y_i = T$, where each X_i contains 10 elements

and each Y_i contains 5 elements. If each element of the set T is an element of exactly 20 of sets X_i 's and exactly 6 of sets Y_i 's, then n is equal to [Sep. 04, 2020 (II)]

- (a) 15
- (b) 50
- (c) 45
- (d) 30

M-2 Mathematics

- **12.** Let $X = \{n \in \mathbb{N}: 1 \le n \le 50\}$. If
 - $A = \{n \in X : n \text{ is } a \text{ multiple of } 2\}$ and

 $B = \{n \in X: n \text{ is } a \text{ multiple of } 7\}$, then the number of elements in the smallest subset of X containing both A and B is ______. [Jan. 7, 2020 (II)]

- 13. Let Z be the set of integers. If $A = \{x \in Z : 2^{(x+2)}(x^2 5x + 6) = 1\}$ and $B = \{x \in Z : -3 < 2x 1 < 9\}$, then the number of subsets of the set $A \times B$, is : [Jan. 12, 2019 (II)]

 (a) 2^{15} (b) 2^{18} (c) 2^{12} (d) 2^{10}
- 14. In a class of 140 students numbered 1 to 140, all even numbered students opted Mathematics course, those whose number is divisible by 3 opted Physics course and those whose number is divisible by 5 opted Chemistry course. Then the number of students who did not opt for any of the three courses is: [Jan. 10, 2019 (II)]
 - (a) 102
- (b) 42
- (c) 1
- (d) 38
- **15.** Let A, B and C be sets such that $\phi \neq A \cap B \subseteq C$. Then which of the following statements is not true?

[April 12, 2019 (II)]

- (a) $B \cap C \neq \emptyset$
- (b) If $(A-B) \subseteq C$, then $A \subseteq C$
- (c) $(C \cup A) \cap (C \cup B) = C$
- (d) If $(A-C) \subseteq B$, then $A \subseteq B$

6. Two newspapers A and B are published in a city. It is known that 25% of the city population reads A and 20% reads B while 8% reads both A and B. Further, 30% of those who read A but not B look into advertisements and 40% of those who read B but not A also look into advertisements, while 50% of those who read both A and B look into advertisements. Then the percentage of the population who look into advertisements is:

[April. 09, 2019 (II)]

- (a) 13.9 (b) 12.8
- (c) 13
- (d) 13.5
- 17. In a certain town, 25% of the families own a phone and 15% own a car; 65% families own neither a phone nor a car and 2,000 families own both a car and a phone. Consider the following three statements: [Online April 10, 2015]
 - (A) 5% families own both a car and a phone
 - (B) 35% families own either a car or a phone
 - (C) 40,000 families live in the town Then.
 - (a) Only (A) and (C) are correct.
 - (b) Only (B) and (C) are correct.
 - (c) All (A), (B) and (C) are correct.
 - (d) Only (A) and (B) are correct.

Hints & Solutions

1. (28)
$$2^m = 112 + 2^n \Rightarrow 2^m - 2^n = 112$$

 $\Rightarrow 2^n (2^{m-n} - 1) = 2^4 (2^3 - 1)$

$$\therefore m = 7, n = 4 \Rightarrow mn = 28$$

- **2. (b)** : Product of two even number is always even and product of two odd numbers is always odd.
 - :. Number of required subsets
 - = Total number of subsets Total number of subsets having only odd numbers

$$=2^{100}-2^{50}=2^{50}(2^{50}-1)$$

3. **(b)** Case-I: $x \in [0,9]$

$$2(3-\sqrt{x})+x-6\sqrt{x}+6=0$$

$$\Rightarrow$$
 x - 8 \sqrt{x} + 12 = 0 \Rightarrow \sqrt{x} = 4,2

$$\Rightarrow$$
 x = 16, 4

Since $x \in [0,9]$

Case-II: $x \in [9, \infty]$

$$2(\sqrt{x} - 3) + x - 6\sqrt{x} + 6 = 0$$

$$\Rightarrow x - 4\sqrt{x} = 0 \Rightarrow x = 16,0$$

Since $x \in [9, \infty]$

$$\therefore x = 16$$

Hence, x = 4 & 16

4. (a)
$$f(x) + 2f(\frac{1}{x}) = 3x$$
(1)
 $f(\frac{1}{x}) + 2f(x) = \frac{3}{x}$ (2)

Adding (1) and (2)

$$\Rightarrow$$
 f(x)+f $\left(\frac{1}{x}\right)$ =x+ $\frac{1}{x}$...(3)

Substracting (1) from (2)

$$\Rightarrow f(x) - f\left(\frac{1}{x}\right) = \frac{3}{x} - 3x \dots (4)$$

On adding (3) and (4)

$$\Rightarrow f(x) = \frac{2}{x} - x$$

$$f(x) = f(-x) \Rightarrow \frac{2}{x} - x = \frac{-2}{x} + x \Rightarrow x = \frac{2}{x}$$

$$x^2 = 2$$
 or $x = \sqrt{2}, -\sqrt{2}$

5. (c)
$$\sin\theta - \cos\theta = \sqrt{2}\cos\theta$$

$$\Rightarrow \sin\theta = \cos\theta + \sqrt{2}\cos\theta$$

$$=(\sqrt{2}+1)\cos\theta=\left(\frac{2-1}{\sqrt{2}-1}\right)\cos\theta$$

$$\Rightarrow (\sqrt{2} - 1) \sin\theta = \cos\theta$$

$$\Rightarrow \sin\theta + \cos\theta = \sqrt{2}\sin\theta$$

$$\therefore P = Q$$

6. (b) A =
$$\{x : |x| < 3, x \in Z\}$$

$$A = \{-2, -1, 0, 1, 2\}$$

$$R = \{(x, y) : y = |x|, x \neq -1\}$$

$$R = \{(-2, 2), (0, 0), (1, 1), (2, 2)\}$$

R has four elements

Number of elements in the power set of R

$$= 2^4 = 16$$

7. **(b)** Let $X = \{1, 2, 3, 4, 5\}$

n(x) = 5

Each element of x has 3 options. Either in set Y or set Z or

none. (: $Y \cap Z = \emptyset$)

So, number of ordered pairs = 3^5

8. **(b)** :
$$B = (B \cap A) \cup B$$

$$=(A \cap C) \cup B$$

$$=(A \cup B) \cap (C \cup B)$$

$$=(A \cup C) \cap (B \cup C)$$

$$=(A \cap B) \cup C$$

$$=(A\cap C)\cup C$$

$$= C$$

9. (b) Given,
$$n(C) = 73$$
, $n(T) = 65$, $n(C \cap T) = x$

$$\therefore 65 \ge n(C \cap T) \ge 65 + 73 - 100$$

$$\Rightarrow$$
 65 \geq $x \geq$ 38 \Rightarrow $x \neq$ 36.

10. (d) Let
$$n(U) = 100$$
, then $n(A) = 63$, $n(B) = 76$

$$n(A \cap B) = x$$

Now,
$$n(A \cup B) = n(A) + n(B) - n(A \cap B) \le 100$$

$$= 63 + 76 - x \le 100$$

$$\Rightarrow x \ge 139 - 100 \Rightarrow x \ge 39$$

M-4 Mathematics

$$:: n(A \cap B) \leq n(A)$$

$$\Rightarrow x \le 63$$

$$\therefore 39 \le x \le 63$$

11. (d)
$$\bigcup_{i=1}^{50} X_i = \bigcup_{i=1}^n Y_i = T$$

:
$$n(X_i) = 10, n(Y_i) = 5$$

So,
$$\bigcup_{i=1}^{50} X_i = 500$$
, $\bigcup_{i=1}^{n} Y_i = 5n$

$$\Rightarrow \frac{500}{20} = \frac{5n}{6} \Rightarrow n = 30$$

12. (29) From the given conditions,

$$n(A) = 25$$
, $n(B) = 7$ and $n(A \cap B) = 3$

$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

$$=25+7-3=29$$

13. (a) Let $x \in A$, then

$$\therefore$$
 $2^{(x+2)(x^2-5x+6)} = 1 \Rightarrow (x+2)(x-2)(x-3) = 0$

$$x = -2, 2, 3$$

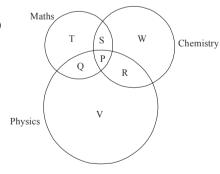
$$A = \{-2, 2, 3\}$$

Then,
$$n(A) = 3$$

Let $x \in B$, then

$$-3 < 2x - 1 < 9$$

$$-1 \le x \le 5$$
 and $x \in Z$


$$B = \{0, 1, 2, 3, 4\}$$

$$n(B) = 5$$

$$n(A \times B) = 3 \times 5 = 15$$

Hence, Number of subsets of $A \times B = 2^{15}$

14. (d)

$$P = \{30, 60, 90, 120\}$$

$$\Rightarrow n(P) = 4$$

$$Q = \{6n: n \in \mathbb{N}, 1 \le n \le 23\} - P$$

$$\Rightarrow n(Q) = 19$$

$$R = \{15n: n \in \mathbb{N}, 1 \le n \le 9\} - P$$

$$\Rightarrow n(R) = 5$$

$$S = \{10n: n \in \mathbb{N}, 1 \le n \le 14\} - P$$

$$\Rightarrow n(S) = 10$$

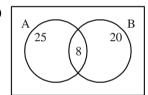
$$n(T) = 70 - n(P) - n(Q) - n(S) = 70 - 33 = 37$$

$$n(V) = 46 - n(P) - n(Q) - n(R) = 46 - 28 = 18$$

$$n(W) = 28 - n(P) - n(R) - n(S) = 28 - 19 = 9$$

$$= 140 - (4+19+5+10+37+18+9)$$

$$=140-102=38$$


15. (d) (1), (2) and (4) are always correct.

In (3) option,

If
$$A = C$$
 then $A - C = \phi$

Clearly, $\phi \subseteq B$ but $A \subseteq B$ is not always true.

16. (a)

% of people who reads A only = 25 - 8 = 17%

% of people who read B only = 20 - 8 = 12%

% of people from A only who read advertisement

$$= 17 \times 0.3 = 5.1\%$$

% of people from B only who read advertisement

$$=12 \times 0.4 = 4.8\%$$

% of people from A & B both who read advertisement

$$= 8 \times 0.5 = 4\%$$

 \therefore total % of people who read advertisement

$$=5.1+4.8+4=13.9\%$$

17. (c)
$$n(P) = 25\%$$

$$n(C) = 15\%$$

$$n(P' \cup C') = 65\%$$

$$\Rightarrow$$
 n(P \cup C)' = 65%

$$n(P \cup C) = 35\%$$

$$n(P \cap C) = n(P) + n(C) - n(P \cup C)$$

$$25 + 15 - 35 = 5\%$$

$$x \times 5\% = 2000$$

$$x = 40,000$$

CLICK HERE

